If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+13y-45=0
a = 1; b = 13; c = -45;
Δ = b2-4ac
Δ = 132-4·1·(-45)
Δ = 349
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{349}}{2*1}=\frac{-13-\sqrt{349}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{349}}{2*1}=\frac{-13+\sqrt{349}}{2} $
| Q=650-5p-p² | | 2÷x-1=1÷x-2 | | 3÷5x-2÷3=2 | | 70x+10=20 | | 2b+72=180 | | 2b+27=180 | | 0=150x-x^2-150 | | 4x-6=2x+-10 | | 4x+6=2x+-10 | | 2.50x+6=10 | | (4x-15)+(4x+3)=180 | | 50+12x=14 | | x/8+42=51 | | 3*0.6*n+0.4*n=0 | | 0.6*n^2+n^2=0 | | x2−5x−36=0 | | 4x/9+1/3+13x/108=8x+19/18 | | 2x+125=125 | | 2/3+8=q-10 | | 9x+37=3 | | 4x+(2−2x)=17 | | 0.2=1-(x/15) | | 2x+4=34−3x | | 0.2x=100000 | | (x-4)(7-x)=5-x² | | 15y-32y=36-70 | | 3x-10+2x-6=-2x+5 | | 3x+(2x-55)+(x-11)=360 | | 3x+(2x-55)+(2x-11)=360 | | 114+2x+x+90=360 | | 156+3x=360 | | 5d-2d=-28 |